Hematologic Malignancies, Hemoglobinopathies, Sickle Cell Disease, and Anemias

BGGNAVIGATOR[®]

Proactive Genotyping

The global solution to navigate pretransfusion testing and the interference of monoclonal antibody therapies

and the second

GRIFOLS

BGGNAVIGATOR[®]

BGG Navigator is the global solution to navigate pretransfusion testing and interference of monoclonal antibody therapies to overcome the challenges of delivering optimal patient care.

Clinical and operational challenges:

- **Proactive molecular blood group genotyping** can replace complicated, antiquated, repetitive, and costly testing algorithms with a single diagnostic solution to unite the needs of oncology, transfusion medicine, and pharmacy^{18,19,20,22}
- Clinical, patient, compliance, and cost risks²²
- Mitigate therapeutic delays
- Provide best matched blood products
- Reduce the risk of alloimmunization
- Reduce re-hospitalization
- CMS, commercial payor, FDA, and OIG compliant
- **Comprehensive antigen genotype** that cannot be obtained serologically due to availability or reliability of antisera²²

- The standard of care at many institutions for patients being treated with immunotherapies, including anti-CD38/47^{1,2,3,22}
- Meet ASH guidelines for sickle cell disease to improve patient quality of life, outcomes, and cost of care²³
- Manage the cost impact on oncology care models, hospital revenue, and patient's out-of-pocket expense via 108 covered ICD-10 Codes
- Non-invasive specimen collection buccal swab
- Removes concerns with subcutaneous therapeutics
- Eliminates inconvenience of phlebotomy and provides logistical flexibility to collect samples anywhere, including a patient's home or office

Proactive pretransfusion testing with BGG Navigator

Potential Serological Cost Avoidance*		
DIAGNOSTIC P CATEGORY**	ER PATIENT COST 2022	
Autoimmune anemia	\$1,226.55	
Hematologic malignancies	\$627.20	
Transplant recipients	\$458.80	
Infection	\$426.97	
Hemoglobinopathies	\$442.88	
Rheumatologic/collagen vascular disease	\$348.74	
Renal insufficiency	\$365.98	
Other anemia	\$343.43	
Liver failure/hepatitis/cirrhosis	\$330.17	
Bleeding	\$308.96	
Vascular disease (not including coronaries	s) \$291.72	
Diabetes	\$299.68	
Cardiovascular	\$289.07	
Solid tumor malignancies	\$287.74	
Non-transplant surgery	\$238.68	
Trauma	\$184.31	
Solid organ donor	\$123.32	
Obstetrics	\$123.32	
Neonatal ICU	\$88.84	

* Does not include additional -\$350 direct genotyping cost incurred by the hospital or patient.

** Diagnostic catgeories highlighted in blue represent coverage policies for 108 ICD-10 codes.

Oncology, pharmacy, and transfusion medicine share in opportunities to achieve the Quadruple AIM

Improve patient outcomes, experiences, and confidence, while maintaining compliance and avoiding costs.

Outcomes and Population Health

- Collect specimens in the outpatient setting to optimize integration of patient care plan before Oncology Care Models, Value Based Care Initiatives, and Quadruple AIM measures begin²¹
- Complies with FDA warnings⁴, CMS Molecular Testing Guidelines⁵ as well as AABB standard of care^{6,22} and ASH guidelines⁷
- Supports Disparity in Health Care Initiatives for Sickle Disease⁸ and Multiple Myeloma¹⁵

Improved Provider Experience

- Test results in the EHR unite the multidisciplinary care team and health system through meaningful use, data portability, and transparency
- Confidence of patient safety through the reduction of ordering errors and duplication⁹
- Curtail risk and costs associated with hospital length of stay¹⁰

Lower Costs

- A proactive ordering in the outpatient setting is a covered benefit for Medicare, Medicare Advantage, and most commercial health plans and is supported by 108 medical necessity ICD-10 codes
- Proactive ordering is becoming the standard of care and an alternative to unrecoverable serology testing costs, labor, instrumentation, training, proficiency, and space allocation^{18,19,20,22}

Improved Patient Experience

- BGG Navigator will most likely be ordered only once in a patient's lifetime and can be performed at any time during therapy 3,22
- Improve quality of life by potentially reducing the frequency of transfusions^{11,13}
- Improved patient/donor matching avoids alloimmunization risk^{11,12,16,17,22}

Intended use: Proactive utilization of the assay for pretreatment with monoclonal antibody therapies (mAB) (CD38/47) or other interfering agents, prospective antigen matching for multiply transfused patients with hemoglobinopathies (eg, sickle cell), and serological testing complications due to prospective or recent transfusion and/or autoantibodies.

BGG Navigator testing provides a single efficient multiplex test to determine the blood group antigen profile of a patient either before treatment begins or even after anti-CD38/47 therapy has been initiated.

4 Steps to Successful Implementation

1	Add to Patient Care Plan/EHR	Unites the care team, removes the financial impact on oncology care models, and improves patient safety
2	Proactive Ordering in the Outpatient Setting	Reduces the risk of therapeutic delays and drives cost reductions for providers, hospitals, and patients
3	Send Samples to Grifols Laboratory	Actionable results and rapid turnaround times improve the clinician and patient experience
4	Simultaneous Reporting/Repository	Test results populate the EHR, while web-based access provides data portability for providers and patients

This information is for US customers only. For customers outside of the US, contact infolab@grifols.com

Learn more about Grifols BGG Navigator at www.diagnostic.grifols.com

Cowan AJ, Green DJ, Kwok M, et al, Diagnosis and management of multiple myeloma: a review, JAMA, 2022;327(5);464-477, 2 Palumbo A, Avet-Loiseau H, Oliva S. et al. Revised international staging system for multiple myeloma; a report from International Myeloma Working Group, J Clin Oncol, 2015;33(26):2863-2869. 3 Lancman G, Arinsburg S, Jhang J, et al. Blood transfusion management for patients treated with anti-CD38 monoclonal antibodies. Front Immunol. 2018;9:2616. 4 Sarclisa. Accessed August 8, 2022. https://www.sarclisahcp.com 5 Laboratory date of service policy. CMS. Updated January 13, 2022. Accessed August 8, 2022. https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/ClinicalLabFeeSched/Clinical-Lab-DOS-Policy 6 Regan DM, Markowitz MA. Mitigating the anti-CD38 interference with serologic testing. AABB. January 15, 2016. Accessed August 8, 2022. https://www.aabb.org/docs/default-source/ default-documentlibrary/resources/association-bulletins/ab16-02.pdf 7 Westoff CM. Blood group genotyping. Blood.2019;133(17):1814-1820. 8 Lee L, Smith-Whitley K, Banks S, Puckrein G. Reducing health care disparities in sickle cell disease: a review. Public Health Rep. 2019;134(6):599-607. 9 Rodziewicz TL, Houseman B, Hipskind JE. Medical Error Reduction and Prevention. [Updated 2022 Jan 4]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499956/ 10 Chou ST, Alsawas M, Fasano RM, et al. American Society of Hematology 2020 guidelines for sickle cell disease: transfusion support. Blood Adv. 2020;4(2):327-355. 11 Carter JH, Flegel WA. Red cell transfusions in the genomics era. Semin Hematol. 2019;56(4):236-240. 12 Holmberg J. It's all in the genes-expanding molecular testing to improve healthcare for those with blood disorders. MLO. January 23, 2019. Accessed August 8, 2022. https://www.mlo-online.com/continuing-education/article/13017230/its-all-in-the-genesexpandingmolecular-testing-to-improve-healthcare-for-those-with-blood-disorders 13 Uhl, Lynne. Pretransfusion testing for red blood cell transfusion. UpToDate. Updated Januarv 7, 2022. Accessed August 8, 2022. https://www.uptodate.com/contents/pretransfusion-testing-for-red-blood-cell-transfusion#H4979047 14 Denomme GA, Anani WQ, Avent ND, et al. Red cell genotyping precision medicine: a conference summary. Ther Adv Hematol. 2017;8(10):277-291. 15 Ailawadhi S, Parikh K, Abouzaid S, et al. Racial disparities in treatment patterns and outcomes among patients with multiple myeloma: a SEER-Medicare analysis. Blood Adv. 2019;3(20):2986-2994. 16 Volkova E, Sippert E, Liu M, et al; Collaborative Study Group. Validated reference panel from renewable source of genomic DNA available for standardization of blood group genotyping. J Mol Diagn. 2019;21(3):525-537. 17 Sippert E, Volkova E, Rios M. Accuracy of blood group typing in the management and prevention of alloimmunization. In Erhabor O and Munshi A (eds). Human Blood Group Systems and Haemoglobinopathies. InTechOpen; 2021. Available from: https://www.intechopen.com/chapters/70038/ 18 Ramsey G, Zinni J, Sumugod RD, Lindholm PF. Utility of routine RBC genotyping for RBC alloantibody problems. Transfusion. 2014;54(suppl 2):47A-48A. 19 Al-Habsi KS, Shih AW, Barty R, et al. Red cell antigen genotyping compared to standard serological phenotyping in sickle cell disease patients in Canada: potential for reducing alloimmunization. Blood. 2015;126(23):3404. 20 Bedel BA, Halverson GR, Lough C, McCoy M, Carey PM. Integrating red cell molecular genotyping into the blood supply chain: how to manage with warm autoantibodies. Transfusion. 2016;56(supp 4):153A. 21 Flegel WA, Gottschall JL, Denomme GA. Integration of red cell genotyping into the blood supply chain: a populationbased study. Lancet Haematol. 2015;2(7):e282-289. 22 AABB news: the evolution of blood group genotyping. AABB. May 20, 2022. Accessed August 8, 2022. https://www.aabb.org/newsresources/news/article/2022/05/20/aabb-news-the-evolutionof-blood-group-genotyping 23 Anani WQ, Duffer K, Kaufman RM, Denomme GA. How do I work up pretransfusion samples containing anti-CD38? Transfusion. 2017;57(6):1337-1342.

GRIFOLS

Grifols Laboratory Solutions Inc. 201 Carlson Circle San Marcos, Texas 78666 USA Tel: +1 (833) 504-1609 Fax: +1 (512) 749-1677 infolab@grifols.com