

The same commitment as the first day

At Grifols, we know the primary concern in blood transfusion is patient safety. With more than 100 years of experience in the field of transfusion medicine, safety is also our number one priority.

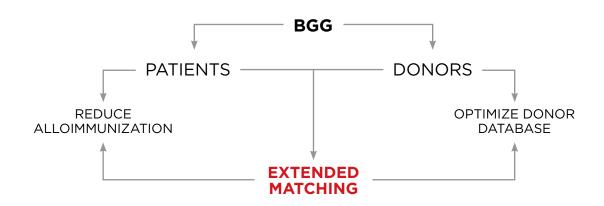
Blood Group Genotyping (BGG) takes safety a step further. Grifols launched its first BGG product in 2007. For more than ten years, our products have been used worldwide to extensively type donors and patients, with excellent performance.²

YEARS
of experience in transfusion medicine

YEARS
of BGG product availability

^{1.} Product registration and availability vary by country. To know whether a product is available in your country, please kindly contact your Grifols representative.

^{2.} Finning et al. Blood Transfus. 2016 Mar;14(2):160-7, 2 (study supported with a research grant from Grifols)


Genotyping: when and why?

Molecular typing has been proven very effective in overcoming some well-known serology limitations such as:¹

- Typing recently and chronically transfused patients
- DAT positive samples
- Weak expressions
- · When antisera is not available

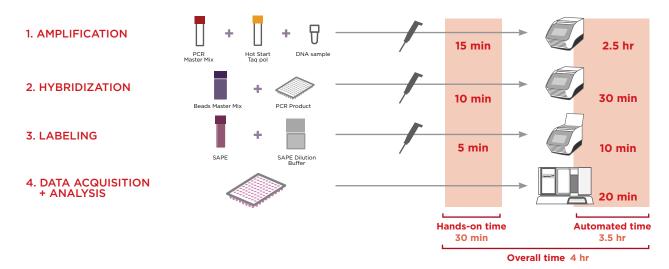
Main applications and benefits of BGG

CLINICAL SITUATION BENEFITS PATIENTS · Chronically transfused patients (SCD, Prospective extended matching has been shown to reduce thalassemia, cancer patients) alloimmunization rates^{2,3} · Autoimmune hemolytic anemia · Reduction of alloimmunization rates is associated with: - Increased patient survival^{4,5} Pregnancy - Expansion of period between transfusions⁶ · Patients under monoclonal treatments such as anti-CD38 DONORS · When antisera is not available Reduction of costs to provide antigen negative units⁷ To build extensively typed donor databases · Save in reagent and labor cost8 Reduction of time to provide antigen negative units⁷ · Better management of negative units stocks (ie, Duffy b and D neg)9,10,11

^{1.} Jungbauer. ISBT Science Series (2011) 6, 399-403; 2. Lasalle-Williams et al. Transfusion. 2011 Aug;51(8):1732-9. 3. Tahhan et al. Transfusion. 1994 Jul;34(7):562-9. 4. Telen et al. Transfusion. 2015 Jun;55(6 Pt 2):1378-87; 5. Nickel et al. Transfusion. 2016 Jan;56(1):107-14. 6. Da Costa et al. Rev Bras Hematol Hemoter. 2013;35(1):35-8. 7. Shafi et al. Transfusion. 2014 May;54(5):1212-9; 8. Winkler et al. Immunohematology. 2012;28(1):24-6. 9. Sandler et al. Transfusion. 2015 Mar;55(3):680-9. 10. Flegel. Transfus Apher Sci. 2011 Feb;44(1):81-91. 11. Peiper et al. J Exp Med. 1995 Apr 1;181(4):1311-7

BLOOD chip ID

Easy and fast process


FEATURES		BENEFITS
EASY	Only 4 tubes to pipetteNo washing stepsReady-to-use reagents	Easy for technicians of all levelsReduces human errors
FAST	 4 hr from DNA to results^{1,2} 30 min hands-on time^{1,2} 	Results are obtained quicklyTechnicians are available to perform other activities
FLEXIBLE	 1-96 tests per run Multiple batch: ID CORE XT, ID HPA XT, and ID RHD XT can be performed in the same run Open technology: standard Luminex® equipment can be used for other products 	 Results obtained when needed without running full batches Different product results can be obtained simultaneously, which improves efficiency and reduces time and resources Efficient equipment investment

BLOODchip ID analytical procedure

^{1.} Finning et al. Blood Transfus. 2016 Mar;14(2):160-7, 2 (study supported with a research grant from Grifols).
2. ID CORE XT package insert, page 10.

Accurate and reliable performance

		REFERENCE
100%	 Multi-center study: Milan (Italy), Barcelona (Spain), Bristol and Aberdeen (UK) 519 samples compared with reference methods 	• Finning et al. Blood Transfus. 2016 Mar;14(2):160-7, 2 (study supported with a research grant from Grifols)
100%	 Study performed in Brazil. 242 samples compared with Open Array and with sequencing if discrepant results 	· Bianchi et al. ISBT Science Series Volume 10, Issue 1, pages 45-51 (Grifols supplied the inputs for the assays ID CORE XT and ID HPA XT)
100%	• 1000 samples tested at 2 sites were compared with CE marked serology assays following Directive 98/79/CE. Antigens were compared with molecular reference methods when serology wasn't available	· ID CORE XT package insert (pages 18-19)
100%	 283 samples tested at 1 site were compared with established molecular genotyping reference methods 	· ID HPA XT package insert (pages 16-17)
100%	• 1000 samples were processed with ID RHD XT following Directive 98/79/CE. Results were compared with RHD serology in every case and with bidirectional sequencing in the case of Weak D samples (n=163). Discrepancies were resolved with bidirectional sequencing	· ID CORE XT package insert (pages 18-19)
99%	Study performed in US. 125 possible r'S samples were tested with HEA beadchip (Immucor) and with ID CORE XT. ID CORE XT could accurately detect r'S type 1 haplotype in a single test	• Moulds et al. Transfusion. 2015 Jun;55(6 Pt 2):1418-22 (Joann M. Moulds and Katrina L. Billingsley were consultants for Novartis and Grifols)
100%	 Use of the analytical procedure in different laboratories, and use of analytical procedure on different days, with different operators and different equipment within the same laboratory 	· ID CORE XT (pages 18-19) and ID HPA XT (page 17) package inserts
	100% 100% 100%	Barcelona (Spain), Bristol and Aberdeen (UK) • 519 samples compared with reference methods 100% • Study performed in Brazil. 242 samples compared with Open Array and with sequencing if discrepant results • 1000 samples tested at 2 sites were compared with CE marked serology assays following Directive 98/79/CE. Antigens were compared with molecular reference methods when serology wasn't available 100% • 283 samples tested at 1 site were compared with established molecular genotyping reference methods 100% • 1000 samples were processed with ID RHD XT following Directive 98/79/CE. Results were compared with RHD serology in every case and with bidirectional sequencing in the case of Weak D samples (n=163). Discrepancies were resolved with bidirectional sequencing 99% • Study performed in US. 125 possible r'S samples were tested with HEA beadchip (Immucor) and with ID CORE XT. ID CORE XT could accurately detect r'S type 1 haplotype in a single test 100% • Use of the analytical procedure in different laboratories, and use of analytical procedure on different days, with different operators and different days, with different operators and different

ID CORE XT

- · Analyzes 29 polymorphisms determining 37 RBC antigens
- · 48 tests per kit

Main applications^{1,2}

- Assess the presence/absence of blood groups in chronically transfused patients
- Screen routine donors
- Select compatible donors for alloimmunized patients
- Complement serological panel with further antigen identification
- Type patients treated with drugs such as daratumumab, which interfere with blood typing methods

ID CORE XT antigen panel

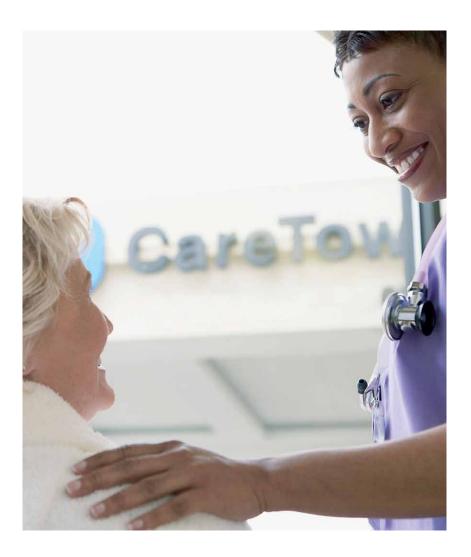
BLOOD GROUPS	ALLELES ASSAYED	PHENOTYPES (ANTIGENS)
RHCE	RHCE*CeCW; RHCE*ceCW RHCE*CECW; RHCE*ce; RHCE*cE; RHCE*Ce; RHCE*CE; RHCE*ceAR RHCE*ce[712G]; RHCE*CeFV RHCE*cEFM; RHCE*ce[733G] RHCE*ce[733G,1006T] RHCE*CeVG; RHCE*cE[712G,733G] RHCE*Ce[733G]; RHD*r's- RHCE*ce[733G,1006T] RHCE*CE-D[5, 7]-CE	C (RH2) E (RH3) c (RH4) e (RH5) CW (RH8) V (RH10) hr\$ (RH19) V\$ (RH20) hrB (RH31)
KELL	KEL*K_KPB_JSB; KEL*k_KPB_JSB KEL*k_KPA_JSB; KEL*k_KPB_JSA	K (KEL1) k (KEL2) Kpa (KEL3) Kpb (KEL4) Jsa (KEL6) Jsb (KEL7)
KIDD	JK*B_null(IVS5-1a) JK*A_null(IVS5-1a); JK*A; JK*B JK*B_null(871C)	Jka (JK1) Jkb (JK2)
DUFFY	FY*A_GATA; FY*B_GATA; FY*A FY*B FY*A[265T] FY*B[265T]_FY*X	Fya (FY1) Fyb (FY2)
MNS	GYPA*M; GYPA*N; GYPB*S; GYPB*s GYPB*S_null(230T) GYPB*S_null(IVS5+5t) GYP.Mur; GYPB*deletion	M (MNS1) N (MNS2) S (MNS3) s (MNS4) U (MNS5) Mia (MNS7)
DIEGO	DI*A; DI*B	Dia (DI1) Dib (DI2)
DOMBROCK	DO*A; DO*B; DO*B_HY DO*A_JO	Doa (DO1) Dob (DO2) Hy (DO4) Joa (DO5)
COLTON	CO*A; CO*B	Coa (CO1) Cob (CO2)
CARTWRIGHT	YT*A; YT*B	Yta (YT1) Ytb (YT2)
LUTHERAN	LU*A; LU*B	Lua (LU1) Lub (LU2)

ID HPA XT

- · Analyzes 13 polymorphisms determining 12 HPA systems
- · 48 tests per kit

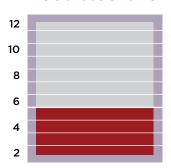
Main applications¹

- Platelet antigen typing in donors and patients
- Perform large-scale donor typing for provision of antigen-negative platelets
- Help to select compatible platelet donors for refractory or alloimmunized patients
- Complement clinical history of alloimmune platelet disorders, such as fetal and neonatal alloimmune thrombocytopenia (FNAIT), post-transfusion purpura, and platelet transfusion refractoriness



ID HPA XT antigen panel

HUMAN PLATELET ANTIGENS	ALLELES ASSAYED	PHENOTYPES (ANTIGENS)
HPA-1	HPA1a; HPA1b	HPA-1a; HPA-1b
HPA-2	HPA2a; HPA2b	HPA-2a; HPA-2b
HPA-3	HPA3a; HPA3b	HPA-3a; HPA-3b
HPA-4	HPA4a; HPA4b	HPA-4a; HPA-4b
HPA-5	HPA5a; HPA5b	HPA-5a; HPA-5b
HPA-6	HPA6a; HPA6b	HPA-6bw
HPA-7	HPA7a; HPA7b	HPA-7bw
HPA-8	HPA8a; HPA8b	HPA-8bw
HPA-9	HPA9a; HPA9b	HPA-9bw
HPA-10	HPA10a; HPA10b	HPA-10bw
HPA-11	HPA11a; HPA11b	HPA-11bw
HPA-15	HPA15a; HPA15b	HPA-15a; HPA-15b

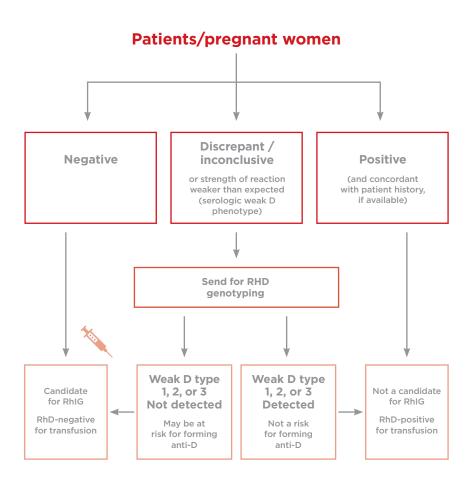

ID RHD XT

- · Analyzes 7 polymorphisms determining 6 RHD variants and HPA-1
- · 24 tests per kit

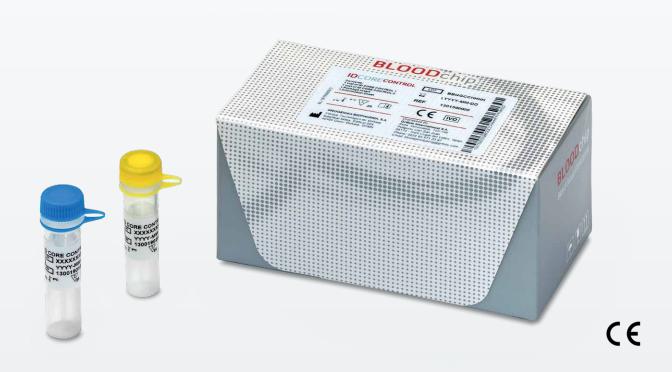
Main applications^{1,2}

- Weak D patient subtyping to rationalize the use of D neg blood units
- Weak D pregnant women subtyping to avoid unnecessary RhIG injections
- Confirmation of D neg donors

Blood stocks: O-


D neg units are scarce

- **1.** Sandler et al. Transfusion. 2015 Mar;55(3):680-9. **2.** Lopez et al. Vox Sanguinis, 2016;111(S1):234


ID RHD XT variant panel

BLOOD GROUP SYSTEM	PREDICTED PHENOTYPE	ALLELES ASSAYED	ISBT NAME
RH	Weak D Type 1	RHD*weak D type 1	RHD*01W.1
RH	Weak D Type 2	RHD*weak D type 2	RHD*01W.2
RH	Weak D Type 3	RHD*weak D type 3	RHD*01W.3
RH	D-	RHD*Pseudogene	RHD*04N.01
RH	D-	RHD*DIIIa-CE (3-7)-D	RHD*03N.01
RH	D-	RHD deletion	RHD*01N.01
HPA-1	HPA-1a; HPA-1b	HPA1a; HPA1b	Not applicable

Recommended algorithm for resolving serologic weak D phenotype test results by RHD genotyping to determine candidacy for RhIG and RhD type for transfusions¹.

ID CORE CONTROL is a positive control for ID CORE XT

- \cdot 2 clones tested in ID CORE XT, including testing for all alleles A and B of all polymorphisms
- · 25 tests per kit

Main benefits

- Standardization of the system quality control processes
- Practical: already commercially available, the laboratory does not have to produce their own controls
- Allows control of all tested alleles

BLOODchip ID software efficiently handles the genotyping procedure and data

Workflow traceability

- Plate configuration, kit, and enzyme lot registration
- Worksheet print-outs with calculated volumes to pipette

Database and multiple-search function

- · Comprehensive database for samples, clinical information, and test results
- Multiple-search function, including phenotypes and genotypes

Clear results

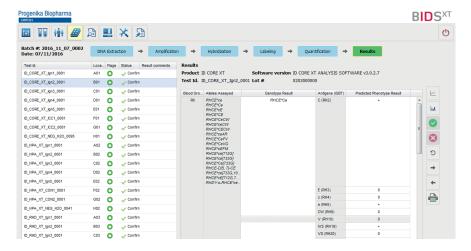
- · Friendly and detailed reports
- Results by sample or batch of samples
- Multiple report formats (.xls, .pdf)
- Results are generated automatically, no user intervention for interpretation

Connectivity

- · Connection with LIS
- Connection with Luminex

Performance and quality control

- Provides management of positive and negative controls
- Provides performance statistics
- Provides raw data graphs for troubleshooting


Audits

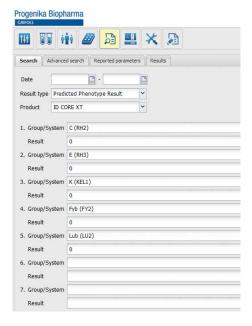
• Registers all actions performed by users

Configurable Comprehensive Flexible

BIDS XT results window

Assists the user throughout the analytical procedure. Results are automatically shown on screen following Luminex quantification.

BIDS XT worksheet


Provides printable worksheets, which include plate design, reagent lot numbers, and automatic calculation of volumes to facilitate the process and avoid errors.

Batch #: 2016_11_07_0002 Comments:

AMPLIFICATION													
	1	2	3	4	5	6	;	7	8	9	10	11	12
Α	Ign1 ID CORE XT	ign1 ID HPA XT	Ign1 ID RHD XT										
В	Igr2 ID CORE XT	Ign2 ID HPA XT	Ign2 ID RHD XT										
С	Ign3 ID CORE XT	Ign3 ID HPA XT	Ign3 ID RHD XT										
D	Ign4 ID CORE XT	Ign4 ID HPA XT	Ign4 ID RHD XT										
Е	Ign5 ID CORE XT	Ign5 ID HPA XT	Ign5 ID RHD XT										
F	ICC1 ID CORE XT	CON1 ID HPA XT	CON1 ID RHD XT										
G	ICC2 ID CORE XT	CON2 ID HPA XT	CON2 ID RHD XT										
Н	H2O ID CORE XT	H2O ID HPA XT	H2O ID RHD XT										
PROD Kit # Tests				ID CORE XT 0203000000 8			PRO Kit #				ID HPA XT 0102000000 8		
REAG	ENTS			LOT#	Volume (µI)	Check	REA	GENTS			LOT#	Volume (µI)	Check
ID CO	RE XT PCR	Master Mix		0203000006	180.0		ID H	IPA XT PCR	Master Mix		0102000014	180.0	
HotSt	arTaq DNA F	Polymerase	(5 U/µL)	HEA16-12A	4.0		Hot	StarTaq DNA	A Polymeras	e (5 U/μL)	HEA16-12A	4.0	

BIDS XT search function

Allows performing complex searches in the database, selecting the desired number of antigens.

BLOOD chip ID

Reagents and software

REFERENCE	PRODUCT NAME	PRODUCT DESCRIPTION	SIZE
221239	ID CORE XT*	Genetic identification panel for 37 RBC antigens by DNA analysis	48 tests
221238	ID HPA XT*	Genetic identification panel for 12 HPA systems by DNA analysis	48 tests
730001	ID RHD XT*	Genetic identification panel for 6 RHD variants and HPA-1	24 tests
730285	ID CORE CONTROL*	Positive control for ID CORE XT	25 tests
221240	BIDS XT*	BLOODchip ID software XT	1 unit

Equipment

REFERENCE	PRODUCT NAME	PRODUCT DESCRIPTION	SIZE
220973	Luminex 200 [™] system with xPONENT® software	Luminex 200 system with xPONENT software and PC/flat panel monitor	1 unit

^{*} ID CORE XT, ID HPA XT, ID RHD XT, ID CORE CONTROL, and BIDS XT comply with the Directive 98/79/EC of the European Parliament and of the Council on in vitro diagnostic medical devices. CE mark certification. ID CORE XT and ID CORE CONTROL are sold in US as IVD (FDA). BIDS XT is not an in vitro medical device neither in EU nor US. ID HPA XT and ID RHD XT are sold in the US for research use only. Not for use in diagnostic procedures. $Product\ registration\ and\ availability\ vary\ by\ country.\ Ask\ your\ local\ Grifols\ representative\ for\ more\ information.$